Projected Subgradient Minimization Versus Superiorization

نویسندگان

  • Yair Censor
  • Ran Davidi
  • Gabor T. Herman
  • Reinhard W. Schulte
  • Luba Tetruashvili
چکیده

The projected subgradient method for constrained minimization repeatedly interlaces subgradient steps for the objective function with projections onto the feasible region, which is the intersection of closed and convex constraints sets, to regain feasibility. The latter poses a computational difficulty and, therefore, the projected subgradient method is applicable only when the feasible region is “simple to project onto”. In contrast to this, in the superiorization methodology a feasibility-seeking algorithm leads the overall process and objective function steps are interlaced into it. This makes a difference because the feasibility-seeking algorithm employs projections onto the individual constraints sets and not onto the entire feasible region. We present the two approaches side-by-side and demonstrate their performance on a problem of computerized tomography image reconstruction, posed as a constrained minimization problem aiming at finding a constraint-compatible solution that has a reduced value of the total variation of the reconstructed image.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak and Strong Superiorization: Between Feasibility-Seeking and Minimization

We review the superiorization methodology, which can be thought of, in some cases, as lying between feasibility-seeking and constrained minimization. It is not quite trying to solve the full fledged constrained minimization problem; rather, the task is to find a feasible point which is superior (with respect to an objective function value) to one returned by a feasibility-seeking only algorithm...

متن کامل

Zero-convex functions, perturbation resilience, and subgradient projections for feasibility-seeking methods

The convex feasibility problem (CFP) is at the core of the modeling of many problems in various areas of science. Subgradient projection methods are important tools for solving the CFP because they enable the use of subgradient calculations instead of orthogonal projections onto the individual sets of the problem. Working in a real Hilbert space, we show that the sequential subgradient projecti...

متن کامل

A strongly convergent method for nonsmooth convex minimization in Hilbert spaces

In this paper we propose a strongly convergent variant on the projected subgradient method for constrained convex minimization problems in Hilbert spaces. The advantage of the proposed method is that it converges strongly when the problem has solutions, without additional assumptions. The method also has the following desirable property: the sequence converges to the solution of the problem whi...

متن کامل

String-averaging projected subgradient methods for constrained minimization

We consider constrained minimization problems and propose to replace the projection onto the entire feasible region, required in the Projected Subgradient Method (PSM), by projections onto the individual sets whose intersection forms the entire feasible region. Specifically, we propose to perform such projections onto the individual sets in an algorithmic regime of a feasibility-seeking iterati...

متن کامل

Strict Fejér Monotonicity by Superiorization of Feasibility-Seeking Projection Methods

We consider the superiorization methodology, which can be thought of as lying between feasibility-seeking and constrained minimization. It is not quite trying to solve the full fledged constrained minimization problem; rather, the task is to find a feasible point which is superior (with respect to the objective function value) to one returned by a feasibility-seeking only algorithm. Our main re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Optimization Theory and Applications

دوره 160  شماره 

صفحات  -

تاریخ انتشار 2014